Discover

Back to filter

Related topics

Pretargeted delivery of PI3K/mTOR small-molecule inhibitor–loaded nanoparticles

Spectral Instruments Imaging

Jun 23, 2021

Overactivation of the PI3K/mTOR signaling has been identified in non-Hodgkin’s lymphoma....

Top 10 Pharma companies have chosen CYTEK for their flow cytometry facility

Cytek Biosciences

Jun 21, 2021

6 of Top 10 Pharma Companies (Based on total group revenues) have chosen CYTEK - full...

Elevated NSD3 histone methylation activity drives squamous cell lung cancer

Spectral Instruments Imaging

Jun 8, 2021

This work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in...

A subset of cytotoxic effector memory T cells enhances CAR T cell efficacy in a model of pancreatic

Tonbo Biosciences

May 21, 2021

Tonbo Biosciences flow cytometry reagents & antibodies are manufactured with the highest...

IncuCyte webinar recording: How to measure Immune Cell Killing of Tumor Cells effectively

Sartorius

May 19, 2021

Immuno-oncology (IO) has transformed cancer treatment. The number of treatments in the IO...

White Paper: Immunophenotyping Rare Immune Cells with Laminar Wash AUTO System

Curiox

May 18, 2021

The Laminar Wash (LW) AUTO system consists of a wall-less plate and a laminar flow cell...

Show all topics (10)

Automated continuous monitoring of growth factor-mediated Endothelial cell migration

Dec 5, 2017

The integrated nature of cell migration is exemplified by angiogenesis. Angiogenesis or neo-angiogenesis refers to the formation of new blood vessels from pre-existing vessels and is critical for development, wound healing and tumor growth. Endothelial cell migration is an important component of angiogenesis, involving chemotactic, haptotactic and mechanotactic (shear stress) induced cell migration. Chemotactic cell migration is typically induced by soluble growth factors such as vascular endothelial growth factor (VEGF) and its isoforms, fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF) amongst others. These growth factors interact with their cognate receptor tyrosine kinases on he surface of endothelial cells activating signaling pathways culminating in directed cell migration.

In the present study, we used the CIM-Plate 16 with the xCELLigence RTCA DP Instrument to monitor growth factor-mediated migration of endothelial cells in realtime using label-free conditions. The CIM-Plate 16 is a 16-well modified Boyden chamber composed of an upper chamber (UC) and a lower chamber (LC). The UC and LC easily snap together to form a tight seal. The UC is sealed at its bottom by a microporous Polyethylene terephthalate (PET) mem-brane. These micropores permit the physical translocation of cells from the upper part of the UC to the bottom side of the membrane. The bottom side of the membrane (the side facing the LC) contains interdigitated gold microelectrode sensors which will come in contact with migrated cells and generate an impedance signal. The LC contains 16 wells, each of which serves as a reservoir for a chemoattractant solution on the bottom side of the wells, separated from each other by pressure-sensitive O-ring seals.

Read more

Scientific paper
Application

Brand profile

Agilent technologies

Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

The RTCA DP Analyzer has three integrated stations for E-Plates 16 or CIM-Plates 16

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey