Discover

Back to filter

Related topics

Intoducing cellenONE: The revolutionary Single Cell isolator

Cellenion

May 25, 2022

A revolutionary platform based on sciDROP PICO precision dispensing technology and coupled with advanced image...

Advances in Leukemia research using shear flow and Bioflux system

Fluxion Biosciences

May 24, 2022

Leukemia is a rare cancer with many subtypes. The production of abnormal leukocytes create disruptions in the immune...

Why use Cytek Aurora?

Cytek Biosciences

May 4, 2022

A prodigy incorporating a unique combination of patent-pending innovative technologies that takes flow cytometry to the...

In-vivo webinar: a versatile use of SPECT/CT in the development of theranostic tracers

MOLECUBES

Mar 9, 2022

Combining (preclinical) imaging and targeted therapy, is the basis of theranostics. In this webinar, Dr. Florea will...

Introducing IsoPlexis Single-Cell Natural Killer Panel

IsoPlexis

Mar 4, 2022

Because of their ability to kill tumour cells, NK cells are an attractive target in cancer immunotherapy, therapeutic...

Enhanced small particle detection on CytekAurora and Northern Lights

Cytek Biosciences

Mar 2, 2022

Aurora system with ESP option, can  fully resolve particles around 70nm and from the 80nm PS bead. The new violet laser...

Quantitative 3D Optical Imaging for Lago

Spectral Instruments Imaging

Feb 21, 2022

Spectral Instrument Imaging just announced a new, strategic partnership with InVivo Analytics, which enables...

Molecular imaging study design basics

Spectral Instruments Imaging

Jan 31, 2022

By combining study design, study management, and image analytics in all major imaging modalities, BioLaurus has...

Extensive assessment of Cytokine production on the NovoCyte Penteon flow cytometer

Agilent technologies

Nov 29, 2021

Cytokines are small molecules essential for immune cell response to activation by pathogens, autoimmunity, or...

Accelerating AML Research Through Single-cell Multi-omics- integrate seamlessly into existing NGS

Mission Bio

Nov 25, 2021

Dr. Linde Miles Memorial Sloan Kettering Cancer Center about her research, use of the Tapestri as a single-cell...

Show all topics (10)

Bronchoscopic confocal fluorescence microscopy for in vivo assessment of free-breathing mice

May 3, 2018

Respiratory diseases, such as pulmonary infections, are an important cause of morbidity and mortality worldwide. Preclinical studies often require invasive techniques to evaluate the extent of infection. Fibered confocal fluorescence microscopy (FCFM) is an emerging optical imaging technique that allows for real-time detection of fluorescently labeled cells within live animals, thereby bridging the gap between in vivo whole-body imaging methods and traditional histological examinations. Previously, the use of FCFM in preclinical lung research was limited to endpoint observations due to the invasive procedures required to access lungs. Here, we introduce a bronchoscopic FCFM approach that enabled in vivo visualization and morphological characterisation of fungal cells within lungs of mice suffering from pulmonary Aspergillus or Cryptococcus infections. The minimally invasive character of this approach allowed longitudinal monitoring of infection in free-breathing animals, thereby providing both visual and quantitative information on infection progression. Both the sensitivity and specificity of this technique were high during advanced stages of infection, allowing clear distinction between infected and non-infected animals. In conclusion, our study demonstrates the potential of this novel bronchoscopic FCFM approach to study pulmonary diseases, which can lead to novel insights in disease pathogenesis by allowing longitudinal in vivo microscopic examinations of the lungs.

Do you want to know more? Read this interesting article!

Scientific paper
Application

Brand profile

Mauna Kea Technologies

Mauna Kea Technologies manufactures Cellvizio Lab, confocal probe based imaging system, providing cellular-level images with minimal invasiveness for longitudinal studies.

Related products

Cellvizio Lab is a single band fiber based microscope for observing in real time at cellular scale

show detail

Cellvizio, a fiber based microscope for observing in real time at cellular scale, features simultaneous, co-registered dual band excitation and detection

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey