Essen BioScience (part of Sartorius), is a team of engineers and biologists with deep expertise in cell-based assays. They invent, manufacture, supply and support cell-based assay instrumentation, reagents and protocols.
Discover
Related topics
Recent publication of in-vivo two-photon intravital imaging study targeting mouse kidney
May 22, 2023
In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal
formation and...
Webinar: Multimodal tissue imaging and machine learning to advance precision medicine
May 17, 2023
Join us for this webinar to learn how the Orion spatial biology imaging platform was used to identify prognostic...
May 5, 2023
Decision to improve the output in a lab is always taken based on knowledge and workflow needs. But final decision to...
Real-Time and Quantitative Analysis of Macrophage Phagocytosis with RTCA eSight
May 4, 2023
The eSight is currently the only instrument that interrogates cell health and behavior using cellular
impedance...
Revolutionize your Flow Cytometry and Sorting workflow with Cytek Biosciences
May 3, 2023
Using full spectrum flow cytometry, Cytek systems ( RUO and CE-IVD) detect the entire fluorochrome emission, allowing...
Thermal Shift Assay using SYPRO Orange to Detect Protein Melting Temperatures
May 2, 2023
The thermal shift assay is based on temperature-induced denaturation and can be monitored using SYPRO Orange. This...
A deep learning and Monte Carlo based framework for bioluminescence imaging center Maastro
Apr 20, 2023
"In this paper,we developed a framework using deep learning for bioluminescence-based targeting for GBM animal...
Gentle sorting of microbial cells and sub-micron particles using WOLF sorter
Apr 18, 2023
While most modern applications of flow cytometry may focus on cells of eukaryotic origin, the first flow analyzers were...
InAlyzer to evaluate G6PD activity in relation with frailty
Mar 28, 2023
InAlyzer is body densitometry instrument for lab animals, equipped with 2 X-Ray sources and able to provide valuable...
Cardiomyocyte isolation using Cellenion’s cellenONE instrument
Mar 24, 2023
The cellenONE platform is ideal for the isolation of fragile and heterogeneous cell size populations, such as...
Nov 16, 2016
The ADSC/ECFC model yields rapidly forming (<48h) endothelial cell‘cord’structures. In the NHDF/HUVEC slowly forming‘tube-like’structures appear which continue to develop and branch even after 10days in culture. High basal formation was observed in the ADSC/ECFC model, but not in the NHDF/HUVEC model. From immuno-cytochemistry, the ADSCs surrounding the cord network label for PDGFR-β and a-SMA, suggesting apericyte phenotype.The pharmacological effects of growth factors and different pathway inhibitors were largely comparable. Interestingly, established cords and tubes display marked resistance to Avastin (Bevacizumab) compared to developing networks. G-secretase inhibition partially reversed established tubes in ADSC/ECFCs and augmented late state branching in the NHDF/HUVEC model. We conclude that these 2 models exhibit strikingly different morphological, temporal and pharmacological profiles. The resistance of established vascular structures to disruption by Avastin (Bevazicumab) may represent a useful translational paradigm for addressing tumour resistance of anti-VEGF therapies.
Brand profile
Essen BioScience (part of Sartorius), is a team of engineers and biologists with deep expertise in cell-based assays. They invent, manufacture, supply and support cell-based assay instrumentation, reagents and protocols.
More info at:
www.essenbioscience.com/