Discover

Back to filter

Related topics

Recent publication of in-vivo two-photon intravital imaging study targeting mouse kidney

IVIM Technology

May 22, 2023

In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal
formation and
...

Webinar: Multimodal tissue imaging and machine learning to advance precision medicine

RareCyte

May 17, 2023

Join us for this webinar to learn how the Orion spatial biology imaging platform was used to identify prognostic...

Mantis ROI calculator

Formulatrix

May 5, 2023

Decision to improve the output in a lab is always taken based on knowledge and workflow needs. But final decision to...

Real-Time and Quantitative Analysis of Macrophage Phagocytosis with RTCA eSight

Agilent technologies

May 4, 2023

The eSight is currently the only instrument that interrogates cell health and behavior using cellular
impedance
...

Thermal Shift Assay using SYPRO Orange to Detect Protein Melting Temperatures

Analytik Jena

May 2, 2023

The thermal shift assay is based on temperature-induced denaturation and can be monitored using SYPRO Orange. This...

A deep learning and Monte Carlo based framework for bioluminescence imaging center Maastro

Precision X-Ray

Apr 20, 2023

"In this paper,we developed a framework using deep learning for bioluminescence-based targeting for GBM animal...

Gentle sorting of microbial cells and sub-micron particles using WOLF sorter

NanoCellect

Apr 18, 2023

While most modern applications of flow cytometry may focus on cells of eukaryotic origin, the first flow analyzers were...

InAlyzer to evaluate G6PD activity in relation with frailty

MEDIKORS

Mar 28, 2023

InAlyzer is body densitometry instrument for lab animals, equipped with 2 X-Ray sources and able to provide valuable...

Cardiomyocyte isolation using Cellenion’s cellenONE instrument

Cellenion

Mar 24, 2023

The cellenONE platform is ideal for the isolation of fragile and heterogeneous cell size populations, such as...

Recorded webinar: Anesthesia Considerations in Small Animal Imaging

Spectral Instruments Imaging

Mar 13, 2023

Anesthesia settings and operation of Optical Imaging Systems: methods, animal handling, safety and regulatory...

Show all topics (10)

Preclinical cardiac safety assesment

Mar 22, 2016

Over the last two decades, a number of blockbuster drugs have been withdrawn or have incurred safety warnings by regulatory agencies due to adverse cardiac effects. In addition, lead compounds or drug candidates are frequently terminated at late stages of drug development due to cardiac safety concerns. Both of these factors can significantly impact the overall cost of drug discovery; consequently, pharmaceutical companies and regulatory agencies have implemented procedures to address these issues.

Most, if not all, in vitro assay systems for cardiac safety are designed to screen for surrogates of arrhythmia, such as hERG channel interaction, rather than arrhythmia itself. Assays designed to screen for compounds that may affect repolarization and induce arrhythmia in the context of the whole heart or heart tissue are not implemented until much later in drug development. These include sophisticated, technically demanding, lowthroughput, and costly procedures such as the Purkinje fiber assay, ventricular wedge assay, and the Langendorff whole heart assay, or telemetry experiments in live and anesthetized animals. The field of preclinical cardiac safety can certainly benefit from an assay system that allows for integrated assessment of compound action on ion channel and non-ion channel targets involved in cardiac excitation-contraction coupling.

The RTCA Cardio Instrument in conjunction with iCell Cardiomyocytes comprises an assay system providing integrated assessment of compound action on multiple targets involved in heart function. This assay system can sensitively and quantitatively detect the effect of compounds on the major ion channels involved in heart function, namely calcium, sodium, and potassium channels. Another major advantage of the assay system is the time resolution. The RTCA Cardio Instrument has a data acquisition rate of 12.5 ms per well of a 96-well plate and can be used simultaneously to monitor acute and chronic drug effects up to days and weeks. The utility of the time-dependent monitoring of compound action on cardiomyocytes can be demonstrated by testing compounds that acutely and directly block hERG channels (E4031, cisapride, etc.) and compounds that interfere with protein trafficking (pentamidine) in a sub-chronic manner. The RTCA Cardio Instrument is able to detect the effects of these compounds on the beating rate and duration of iCell Cardiomyocytes.

The xCELLigence System RTCA Cardio Instrument, in conjunction with iCell Cardiomyocytes, represents a physiologically relevant and predictive assay system for preclinical cardio-safety assessment of lead compounds. The features of this assay system, including time resolution, dynamic monitoring of mechanical beating activity of cardiomyocytes, and 96-well throughput, will surely provide additional mechanistic and toxicity information for compound action on the heart.

Application
Product news

Brand profile

Agilent technologies

Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

Cardio Instrument is a high-resolution system for label-free-dual-mode monitoring of cardiomyocyte and cardiotoxicity testing

show detail

The new CardioECR system combines impedance and Multi Electrode Array (MEA) technology with a pacing function

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey