The company provides a revolutionary cell culturing platform that replicates the physiological environment of native tissues to deliver reproducible and biologically relevant molecular analysis.
Discover
Related topics
InAlyzer to evaluate G6PD activity in relation with frailty
Mar 28, 2023
InAlyzer is body densitometry instrument for lab animals, equipped with 2 X-Ray sources and able to provide valuable...
Cardiomyocyte isolation using Cellenion’s cellenONE instrument
Mar 24, 2023
The cellenONE platform is ideal for the isolation of fragile and heterogeneous cell size populations, such as...
Recorded webinar: Anesthesia Considerations in Small Animal Imaging
Mar 13, 2023
Anesthesia settings and operation of Optical Imaging Systems: methods, animal handling, safety and regulatory...
Introducing Cytek Human Leukocyte Kit, the first ever 15-color lyse no-wash assay
Mar 13, 2023
This kit has been designed to enumerate all major leukocyte subsets and it mirrors and expands on those identified in a...
Immunofluorescence Imaging for Rare Cell Detection with CyteFinder II
Mar 7, 2023
CyteFinder II Instruments are high speed, whole slide imaging systems with options for liquid biopsy analysis and...
NanoCellect Webinar: Optimizing the Cell Line Development Process with Microfluidic Cell Sorting
Mar 3, 2023
Single-cell selection and cloning are required for bioengineering workflows such as antibody production, cell therapy,...
Flash news - did you know, that you can use Singulator S100 also for plant research?
Feb 10, 2023
In this short TechNote you can find how Singulator can help the data quality in Single cell sequencing - now even in...
Webinar: Spatial Biology and immunofluorescence to study human pancreata in in type 1 diabete
Feb 9, 2023
In this webinar, Dr. Quesada-Masachs from La Jolla Institute for Immunology reveals the image analysis pipeline that...
Advances in Leukemia research using shear flow and Bioflux system
Feb 3, 2023
Leukemia is a rare cancer with many subtypes. The production of abnormal leukocytes create disruptions in the immune...
Webinar: Dose Reduction and Image Enhancement in Preclinical Mouse Imaging using Deep Learning
Jan 31, 2023
In this webinar, ir. Florence Muller (Ghent University - University of Pennsylvania) is presenting two recent studies...
Nov 29, 2017
While extensive research has focused on soluble factors to optimize stem cell culture, conditions such as hypoxia, atmospheric pressure, and the composition and organization of the extracellular matrix are also important drivers of stem cell differentiation and cell function. However, no study to date has systematically analyzed the contribution of these factors in the maintenance and differentiation of stem cells, leading to uncertainty surrounding the extracellular factors that dictate stem cell state.To address this, Xcell Biosciences has developed a novel stem cell culturing platform, the Avatar SystemTM, which allows for tunable control of the microenvironment and uniquely offers customizable settings for oxygen and hydrostatic pressure. In a recent study, Xcell scientists analyzed human pluripotent stem cells to characterize their underlying biology and to demonstrate the utility of the Avatar system. Cells were cultured in minimally supportive media to allow stem cell state to drift. The Avatar system was used to tune environmental conditions and determine the impact of oxygen tension and pressure in guiding stem cell fate.
For this project, scientists reprogrammed primary human dermal fibroblasts via episomal expression of key stemness factors (Sox2, Nanog, and Oct4) while cultured in altered oxygen concentration (1% – 5%) and atmospheric pressure (0 PSI – 5 PSI) using the Avatar system compared to conventional culture methods. Having generated iPSCs, scientists next aimed to assess their pluripotent potential relative to the condition in which reprogramming and subsequent long term culture was performed.
Brand profile
The company provides a revolutionary cell culturing platform that replicates the physiological environment of native tissues to deliver reproducible and biologically relevant molecular analysis.
More info at:
www.xcellbio.com