Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.
Discover
Related topics
FLO i8 - new liquid handler with 8 independently spanning channels
Jun 1, 2023
The FLO i8 Liquid Handler is ideal for optimizing your protocols and bench work, allowing you to focus on the research,...
Precision Launches CellRadHD – The Next Generation High-Dose Benchtop Irradiator
May 31, 2023
New CellRadHD offers the highest dose available in a benchtop unit. Up to 160kV, this irradiator is maximizing...
Recent publication of in-vivo two-photon intravital imaging study targeting mouse kidney
May 22, 2023
In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal
formation and...
May 5, 2023
Decision to improve the output in a lab is always taken based on knowledge and workflow needs. But final decision to...
Revolutionize your Flow Cytometry and Sorting workflow with Cytek Biosciences
May 3, 2023
Using full spectrum flow cytometry, Cytek systems ( RUO and CE-IVD) detect the entire fluorochrome emission, allowing...
Thermal Shift Assay using SYPRO Orange to Detect Protein Melting Temperatures
May 2, 2023
The thermal shift assay is based on temperature-induced denaturation and can be monitored using SYPRO Orange. This...
A deep learning and Monte Carlo based framework for bioluminescence imaging center Maastro
Apr 20, 2023
"In this paper,we developed a framework using deep learning for bioluminescence-based targeting for GBM animal...
InAlyzer to evaluate G6PD activity in relation with frailty
Mar 28, 2023
InAlyzer is body densitometry instrument for lab animals, equipped with 2 X-Ray sources and able to provide valuable...
Flash news - did you know, that you can use Singulator S100 also for plant research?
Feb 10, 2023
In this short TechNote you can find how Singulator can help the data quality in Single cell sequencing - now even in...
Apr 4, 2016
Efficient cellular uptake of nanoparticles is crucial for modulating the cell behaviors as well as dictating the cell fate. In this work, by using two commercial reagents (the membrane modification reagent “cholesterol–PEG–biotin” and the avidin-modified quantum dots (QDs) “QD–avidin”), we achieved the enhanced plasma membrane enrichment and endocytosis of fluorescent QDs in cancer cells through cell surface engineering. The QD–cell interaction involved two stages: adsorption and internalization. After incubation with cholesterol–PEG2k–biotin, the cell membrane was engineered with biotin groups that would actively recruit QD–avidin to the cell surface within 1 min. This fast adsorption process could realize high quality and photostable plasma membrane imaging, which is simple, low-cost and generally applicable as compared with the previously reported membrane protein/receptor labeling-based QD imaging. After that, the QDs attached on the cell surface underwent the internalization process and 12 h later, almost all the QDs were internalized through endocytosis. Notably, we found that the internalization of QDs was not via common endocytosis pathways (such as clathrin- or caveolae-mediated endocytosis or macropinocytosis) but more likely via lipid raft-dependent endocytosis. In contrast, without cell surface engineering, the QD–avidin showed negligible cellular uptake. The results demonstrate that cell surface engineering is an efficient strategy to image the plasma membrane and increase cellular uptake of nanoparticles, and will be potentially applied to enhance the efficacy of nanomedicines when therapeutic nanoparticles are used.
Related technologies: Conventional flow cytometry
Brand profile
Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.
More info at:
www.aceabio.com