Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.
Automated microscopy and Spatial Proteomics
Automated microscopy and image analysis
Discover
Related topics
Factors Affecting Petri Dish Condensation in Tissue Culture (CU) Chambers
Nov 29, 2023
In this report, we will investigate the effects of infrared lighting, light intensity, stacking, as well as constant...
Visualization of spatial distribution of hemoglobin with various oxygen saturations in small animals
Nov 28, 2023
With the aid of our uniquely developed device and analysis software, our primary objective is to map the spatial...
A fluorescent reporter system for anaerobic thermophiles
Nov 27, 2023
Anaerobic microorganisms are key effectors for the sustainable production of biofuels and biochemicals, as they...
Vizgen webinar: spatial relationships in Developmental Biology
Nov 21, 2023
MERFISH integrates spatial transcriptomics technology with high resolution spatial imaging, In this webinar we will...
ScanDrop² Series: Maximum Flexibility in Micro-Volume
Nov 6, 2023
The ScanDrop2 from Analytik Jena is the second generation of microvolume spectrophotometers. It´s innovative Butterfly...
NanoCellect webinar: Plant Potential - Gentle Cell Sorting for Enhanced Plant Biology Workflows
Nov 3, 2023
Gentle cell sorting is a useful tool to increase the efficiency of plant biology workflows that include gene...
SIMOA-based analysis of plasma NFL levels in MCI and AD patients
Nov 3, 2023
The single-molecule array assay (SIMOA)-based detection of neurofilament light (NFL) chain could be useful in...
Single Cell Deposition: the cornerstone of Flow Cytometry for cellular analysis and manipulation
Nov 2, 2023
One notable technology for harnessing the power of single cell deposition is the NanoCellect WOLF G2 Cell Sorter and N1...
Single cell genotypic and phenotypic analysis of residual disease in acute myeloid leukemia
Nov 1, 2023
Measurable residual disease (MRD), defined as the population of cancer cells which persists following therapy, serves...
Emulate in vivo conditions – introduce shear flow to your experiments with BioFlux system
Oct 31, 2023
Most research is still conducted in vitro without the presence of flow. We use the BioFlux System to give you the...
Feb 24, 2017
Early hopes of finding a therapeutic “magic bullet” capable of eradicating all types of cancer were progressively replaced with the sobering realization that cancer consists of >100 distinct diseases that manifest in ~200 cell types with diverse genetic/mutational etiologies. For the clinician this complexity is compounded by the fact that a single disease phenotype can result from multiple genotypes, each of which requires a unique approach to treatment (estrogen dependent/independent breast cancer being a primary example). Citing that the cancer scientific literature had already become “complex almost beyond measure,” in 2000 Robert Weinberg and Douglas Hanahan stated a belief that “the complexities of the disease, described in the laboratory and the clinic, will become understandable in terms of a small number of underlying principles.”In this now famous paper they suggested that distillation of decades of research reveals “a small number of molecular,biochemical, and cellular traits – acquired capabilities – shared by most and perhaps all types of human cancer.”
Brand profile
Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.
More info at:
www.aceabio.com