Discover

Back to filter

Related topics

Webinar: Join us for an In-Depth Look at the Revolutionary Small Animal Radiotherapy System at STTARR

Precision X-Ray

Aug 17, 2023

Register for an engaging webinar led by Naz Chaudary, Ph.D., and Research Technician, Alex Wang from the...

Optimizing Gene Expression with Bioluminescence & the piggyBac System

Spectral Instruments Imaging

Aug 15, 2023

Discover how bioluminescence imaging & the piggyBac gene editing system optimize & track gene expression in mouse...

High-plex immunofluorescence imaging and traditional histology of the same tissue section

RareCyte

Aug 7, 2023

RareCyte Orion’ platform has been used for collecting H&E and high-plex immunofluorescence images from the same cells...

Drive key insights and discoveries with NEW Live Cell Analysis applications for eSight system

Agilent technologies

Aug 2, 2023

eSight is now powerful like never before. Learn more about new dedicated application modules for live-cell analysis: 3D...

Single cell-resolution in situ sequencing elucidates spatial dynamics of multiple sclerosis

Vizgen

Jul 14, 2023

MERFISH integrates spatial transcriptomics technology with high resolution spatial imaging, fluidics, image processing,...

High speed, compact and fully automated microscope inside your incubator? Lumascope850

Etaluma

Jul 13, 2023

The powerful, new LS850 Microscope is the latest generation of our fully automated three-channel flagship model and...

MARS - High Efficiency Separation of CD34+ HSC from Mobilized Blood

Applied Cells

Jul 12, 2023

MARS platform provides an easy and cost-effective protocol for CD34+ cell isolation. Single pass CD34+ HSC enrichment...

InAlyzer - The technology chosen by NASA

MEDIKORS

Jul 10, 2023

MEDIKORS's InAlyzer was finally selected as the equipment to be used for NASA's space environment biological research

Nature Article: The genomic landscape of pediatric acute lymphoblastic leukemia

Mission Bio

Jun 29, 2023

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and...

Brain-specific biomarkers in urine as a non-invasive approach to monitor neuronal and glial damage

Quanterix

Jun 28, 2023

This study evaluates the quantitative measurability of glial fibrillary acidic protein (GFAP), neurofilament light...

Show all topics (10)

Quantifying virus-mediated cytopathic effect with xCELLigence platform

Jul 20, 2016

Virus infection of a host cell typically includes the selective suppression of host cell functions and redirection of resources towards viral replication and assembly, ultimately leading to host cell lysis and dissemination of new virus. While host cell rounding, detachment from the plate surface and/or lysis are readily detected by real-time impedance monitoring, more subtle changes in host cell morphology occurring during earlier phases of viral infection can also be monitored. This sensitivity to virus-induced changes in host cell morphology and behavior makes the xCELLigence technology very well suited for a wide array of virology applications, including: differentiating between virus strains/isolates based on the kinetics of replication and cytopathic effect, determining viral titers, determining neutralizing antibody titers, and studying virus-host cell interactions using physiologically relevant cell types that cannot typically be used because they aren’t compatible with traditional assay techniques.

Evaluating the relative fitness of different virus strains/isolates, and determining the identity of a virus isolate can involve a large number of techniques, including: ELISA, PCR, RT-PCR, Western blotting, plaque assays, immunofluorescence, etc. Owing to its ability to kinetically characterize a virus-induced cytopathic effect, xCELLigence real-time cell analysis (RTCA) can be used in place of, or in addition to, some of these traditional assays for characterizing virus fitness and/or identity.

RTCA-based kinetic comparison can be used for assessing the relative fitness/virulence of different virus isolates/strains, or to help identify a virus using RTCA traces from known standards.

Key Benefits:

- Quantify virus titer: An automated, simple, reduced workload alternative to plaque assays.
- Evaluate the fitness of different strains/isolates: The relative fitness of different viruses (natural isolates, engineered mutants, etc.) are readily evaluated using the onset and kinetics of virus-mediated cytopathic effects.
- Determine/confirm virus identity: Real-time kinetic traces of virus-mediated cytopathic effects can be compared to those of characterized viruses to help determine/confirm the identity of a virus.
- Quantify neutralizing antibody titer: Because the time of cytopathic effect onset correlates with neutralizing antibody concentration, standard curves are easy to generate. These can be used for quantifying neutralizing antibody in samples of unknown concentration.
- Rapid assay optimization: Quickly identify the optimal viral titer and assay time point for subsequent screening of inhibitory compounds, neutralizing antibodies and neutralizing serums.

Application
Product news

Brand profile

Agilent technologies

Agilent provides xCELLigence impedance-based, label-free, real time cell analysis system and NovoCyte flow cytometers.

Related products

The RTCA DP Analyzer has three integrated stations for E-Plates 16 or CIM-Plates 16

show detail

Located inside a tissue culture incubator, it is capable of switching any one of the wells on the E-Plate 96 to the RTCA Analyzer for impedance measurement

show detail

Located inside a tissue culture incubator, it is capable of switching any one of the wells on any of six E-Plates to the RTCA Analyzer for impedance measurement

show detail

We supply and support Life-Science Technologies in the territory of Central and Eastern Europe.

Czech Republic

Slovakia

Hungary

Poland

Croatia

Slovenia

Serbia

Romania

Bulgaria

Latvia

Lithuania

Estonia

Russia

Ukraine

Belarus

Turkey